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Formation of a pointed drop in Taylor's 
four-roller mill 

By L E O N I D  K. ANTANOVSKIIT 
Department of Mathematics, Monash University, Clayton, Victoria 3168, Australia 

(Received 5 March 1996 and in revised form 2 July 1996) 

The paper addresses the mathematical modelling of the formation of a pointed drop 
in a four-roller mill, observed by Taylor (1934) in the Cavendish Laboratory. Since 
the experiments were carried out with drops of small diameter compared to the mill 
size, the method of matched asymptotic expansions is applicable. A two-dimensional 
Stokes flow generated by the rotating rollers in the mill but with no drop effect 
(outer problem) is computed numerically by a boundary-element method. The local 
expansion of that flow at the centre of the mill, where the drop is to be positioned, is 
used as a far field for the flow around the drop in unbounded fluid (inner problem). 
Employing a plane-flow model and using complex-variable techniques, the explicit 
solutions previously obtained by the author are adapted to the inner problem. It is 
proved that, with an increasing rotation rate of the rollers, the drop does develop 
two apparent cusps on the interface, and its shapes have striking similarities with 
Taylor's experiments. Response diagrams showing the drop distortion versus the 
elongational strain demonstrate that these are one-to-one function of each other if 
the drop diameter is greater than a critical value determined by the size of the mill 
but cease to be one-to-one otherwise. This behaviour is identified with a sudden 
transition from a rounded drop to a cusped one at a critical strain. 

1. Introduction 
Some experiments on deformation of viscous and inviscid drops subjected to 

extensional flow, at low Reynolds number, were described by Taylor (1934). In the 
experiments a neutrally buoyant single drop was placed in a four-roller mill filled with 
golden syrup, a highly viscous liquid, and then the effect of increasing flow velocity on 
the shape of the drop was observed. When the drop viscosity was not small compared 
with that of the exterior fluid, the drop was always rounded, and its elongation 
gradually increased with increasing rate of strain up to bursting. However, for 
inviscid drops. a sudden transition in shape at a critical straining rate was revealed, 
resulting in the abrupt formation of pointed ends. These experiments were then 
carefully repeated by Rumscheidt & Mason (1961). and many interesting phenomena 
were documented, including the existence of steady pointed drops, bursting rounded 
drops and even bursting pointed drops (see also the review by Stone 1994). Similar 
effects of the formation of a singularity in the free surface were observed by Moffatt 
(1977), Joseph er al. (1991) and Jeong & Moffatt (1992) in a number of free-surface 
flows induced by rotating cylinders. 
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326 L. K.  Antanovskii 
Concerning the mathematical modelling of the formation of a pointed drop, many 

difficulties were encountered, arising from the presence of the free surface that 
undergoes very large deformation and from the fact that the flow set up by Taylor 
is genuinely three-dimensional. Since the pointed drop is usually spindle-shaped but 
the far field is two-dimensional, two qualitative models naturally suggest themselves, 
which are based on the assumptions of either axisymmetric or plane flow. The 
behaviour of axisymmetric drops was studied numerically by Youngren & Acrivos 
(1976) employing a boundary-element method and by Buckmaster (1972, 1973), 
Acrivos & Lo (1978) and Sherwood (1981, 1984) using the assumption of a slender 
drop. Asymptotical analysis of the deformation of a three-dimensional droplet placed 
in Taylor’s flow, was presented by Hinch & Acrivos (1979). Unfortunately, both 
numerical and asymptotical methods are unable to resolve fine details of the flow and 
the drop shape near the pointed ends. Thus, any analytical solution to the problem 
of the formation of a pointed drop is of great interest. 

The first attempt at analytical investigation of the drop deformation was undertaken 
by Richardson (1968). Using complex-variable techniques, an elegant analysis of the 
deformation of a plane inviscid drop subjected to a pure straining flow with linear far 
field was implemented. The explicit solutions obtained showed that the drop always 
had an elliptical cross-section. Therefore, none of these solutions exhibits cusps or 
provides any evidence of bursting. Seemingly, this surprising result discouraged future 
researchers, since it was conjectured that the elliptical shape might be an intrinsic 
feature of the plane-flow model (Buckmaster 1973). Notwithstanding this, Richardson 
(1973) demonstrated that the shape of a plane inviscid drop placed in a parabolic 
(Poiseuille) flow has striking similarities with some experiments on three-dimensional 
bubbles introduced into a fluid flowing through a circular tube. This is a good reason 
to believe that the plane-flow model is capable of retaining the essential physics. 

Moreover, Professor D. D. Joseph suggested in a private conversation at the 3rd 
Caribbean Congress on Fluid Dynamics (Caracas, Venezuela, February 1995) that the 
singularity is likely to be two-dimensional as in Liu, Liao & Joseph (1995), motivated 
by the plausible instability of axisymmetric pointed ends. If that is the case, the cusp 
should be in the plane of the rollers’ axles and hence could not be observed from 
the front side of the mill. This is also confirmed by the experiments on the skirt 
formation on a fairly large bubble trying to squeeze between two counter-rotating 
cylinders in a highly viscous fluid, which were carried out by Professor H. K. Moffatt 
(1992, unpublished) in the two-roller apparatus described in Jeong & Moffatt (1992). 

The approach of Richardson (1968) is extended in Antanovskii (1994b) to a two- 
dimensional time-evolving inviscid drop initially placed within a potential viscous 
flow. If the complex velocity of this flow behaves at infinity as a polynomial, a 
broad class of explicit time-dependent solutions is found, which incorporate those 
obtained by Richardson (1968) as the steady-state case, and are similar, in some 
respects, to explicit solutions describing the coalescence of a two-dimensional drop 
in vacuum deduced by Hopper (1990, 1991) and Richardson (1992), and extended 
to semi-infinite flow domains by Hopper (1992, 1993) and Jeong & Moffatt (1992). 
Recently, Tanveer & Vasconcelos (1995) demonstrated that these solutions are also 
relevant to time-evolving inviscid drops (bubbles) placed in a shear (rotational) flow 
with a linear velocity field at infinity. 

A steady-state flow around a two-dimensional inviscid drop placed in fluid the 
velocity of which at large distances is that of a general Stokes flow with non-vanishing 
vorticity, was considered in Antanovskii (19944. Again, if the far-field velocity is a 
polynomial, explicit solutions generalizing those derived by Richardson (1973), are 
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obtained. These solutions were applied to the modelling of the formation of a pointed 
drop in Antanovskii (1994c, 1995). In particular, i t  was demonstrated that a drop 
within a Stokes flow, being the superposition of pure straining (corner) flow with a 
linear velocity field and a motion described by cubic terms, no longer had an elliptical 
cross-section. Depending on the cubic terms, there are two mutually exclusive regimes 
of behaviour for the drop with increasing strain, which can be identified with the 
onset of either cusping or bursting. In the first case a drop survives for all attainable 
strains, developing very sharp ends, whereas in the second case there is an upper 
bound for strains at which a steady solution still exists. In addition, it is shown that 
the elongational strain is not monotonic with respect to the drop deformation as the 
cubic terms become smaller (Antanovskii 1995). The non-monotonic dependence can 
be identified with a sudden transition of the rounded ends of the drop to the pointed 
ones through instability and bifurcation. However, in the above papers nothing is 
said about the local structure of the real flow field in Taylor’s mill, on which the drop 
behaviour appears to depend drastically. 

In this paper a more realistic flow in Taylor’s four-roller mill is considered. Fol- 
lowing the spirit of matched asymptotic expansions, the velocity field undisturbed 
by the presence of the drop (outer problem) is computed numerically by means of 
a boundary-element method. An appropriately truncated Taylor series of this solu- 
tion about the mill centre is then used as a far field for the flow around the drop 
(inner problem). This problem is solved analytically by means of complex-variable 
techniques. It is revealed that an inviscid drop positioned at the centre of the mill 
(being a stagnation point) is increasingly distorted by the flow, with two apparent 
cusps developing in the free surface. This is in complete agreement with Taylor’s 
experiments. The response diagrams showing the drop deformation versus capillary 
number, the ratio of elongational strain to capillary forces, are plotted for some drop 
radii. I t  is demonstrated that the response diagrams show one-to-one function for a 
drop of radius greater than a critical value determined by the mill geometry but cease 
to be one-to-one otherwise. This fact describes a sudden transition in shape through 
instability of one of the multiple solutions. 

All the numerical simulations are carried out exactly for Taylor’s experiments 
described in detail in $2. An asymptotic mathematical model is formulated in 53, and 
the solution is presented in $4. The results obtained are discussed in $5. 

2. Description of Taylor’s experiments 
To study the stirring processes in emulsions composed of two immiscible liquids, 

the four-roller mill sketched in figure 1 was designed by Taylor (1934). Four brass 
cylinders of length 3.81 cm and diameter 2.39 cm were mounted at the corners of a 
square of sides 3.18 cm. Their axles ran in brass bearings fixed in two glass plates 
which formed the sides of a box of internal dimensions 7.6 x 7.6 x 3.9 cm. The 
remaining sides were brass. The box was filled with golden syrup (concentrated sugar 
solution) diluted with a small quantity of water till the viscosity ,u was between 50 
and 150 g cm-‘ s-‘ . 

The cylinders were driven in the directions indicated by arrows in figure 1 at the 
same speed to produce a flow which was locally the corner flow represented by 

u ,  = G.u , G,, = - G y  , p = constant , (2.1) 

where (x,y) are the Cartesian coordinates as shown in figure 1, (vx ,vv )  are the 
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FIGURE 1. Schematic of Taylor’s four-roller mill. 

corresponding components of velocity, and p is the pressure. The stream lines of this 
flow are rectangular hyperbolas. 

It is conceivable that G = Co/T at low Reynolds number, where T is the time of 
one revolution of the cylinders, and CO is a dimensionless constant of the apparatus. 
To measure CO, the times taken for images of small particles in the golden syrup to 
pass along the x-axis (from x1 to x2) were observed, as well as the time T .  Using 
equation (2.1), the deformation rate is given by 

log (XZ/XI) 
G =  

t 2  - tl 

The times taken to cover 0.5 cm segments were measured for a particular T = 48.7 s, 
which suggested that G = 0.105 s-l and hence CO = 5.1 (see columns 1-3 of table 1 
in $5). 

A number of liquids of viscosity p’ which do not mix with water were used for the 
drop placed at the centre of the mill. For low values of the viscosity ratio p ’ /p  (which 
are of interest here), a mixture of carbon tetrachloride with the paraffin oil was made 
up to be of the same density as the syrup. In this case, p’ = 0.034 gcm-ls-l and 
hence p l / p  was sufficiently small to treat the drop liquid as inviscid. The interfacial 
surface tension between the two liquids was measured as 0 = 23 dyncm-’. 

Before setting the apparatus in motion, the drop was introduced into the syrup, 
and it became spherical under the influence of surface tension and was photographed 
in that condition in order to measure its radius R. In Taylor’s experiments, the drop 
radius was in the range 0.12 to 0.25 cm. The apparatus was then set in motion at a 
slow speed and adjusted till the drop was steady and stationary, and a photograph 
was then taken. This procedure was repeated for an increased speed of motion, and 
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a sequence of photographs was obtained from which the deformation parameter, 

(2.2) 
R,n,, - R,,,, 
R,,Y + Rm,,, ' 

J =  

was calculated. Here R,,, and R,,,, are the major and minor axes of the distorted 
drop in the (x, y)-plane, respectively. The capillary number, 

. 2 p G R  
A=---- (2.3) 

\ ,  

CT 

being the ratio of disruptive elongational stresses to cohesive capillary forces, was 
simultaneously measured, and the response diagram (I., 6)  was then plotted. 

At a low rotation rate of the cylinders, the drop was observed to be only slightly 
distorted from the spherical form, and the response diagram satisfied nearly exactly 
the condition 6 = R, which was in excellent agreement with the theory previously 
formulated by Taylor (1932). For a higher rotation rate of the cylinders, the drop 
developed into a form which was far from spherical, and at a critical rate i = 0.41 
the drop ends suddenly became pointed. Actually, the drop being fairly large 
( R  = 0.25 cm), i t  was not in a truly steady state, for after developing the pointed 
ends a thin skin appeared to slip off its surface, and the drop again became rounded. 
This configuration persisted and the ends of the resulting smaller drop ( R  = 0.12 cm) 
again became pointed at A = 0.65. Further increases in strain merely increased the 
drop elongation, and the pointed configuration survived up to considerably higher 
strains ( i  = 2.45) with no sign that the drop would burst. 

3. The mathematical model 
Consider an inviscid drop placed within a four-roller mill filled with a highly viscous 

liquid of the same density (see figure 1). In particular, the drop is neutrally buoyant 
in the exterior fluid, and hence gravity is completely removed from our analysis. In 
order to model the experiments in a qualitative fashion, a two-dimensional problem 
is considered throughout, which will enable us to use explicit solutions via employing 
complex-variable techniques and conformal mappings. 

Let Y be the two-dimensional flow domain 'occupied' by the exterior fluid (golden 
syrup), which is bounded by the rigid walls ,@I of the mill and the rollers, and by the 
drop interface .Y. The curve 9 encloses the drop 2'. Since the golden syrup is of 
very high viscosity p, the flow velocity v and pressure p are governed by the Stokes 
equations 

Insofar as the drop viscosity p' << p, it may be assumed that the velocity field in 
9' vanishes and hence the drop pressure p' is constant. Since a constant pressure 
superposed on the whole flow field does not alter the dynamics of an incompressible 
drop, one can put p' = 0 without loss of generality. 

The flow velocity vanishes at the mill walls and is given at the rollers' surface. This 
kinematic condition reads 

V - v = O ,  V p = p A v  i n 9 .  (3.1) 

v = V  o n g ,  (3.2) 
where V is the given tangential velocity of the rigid boundary ( V  = 0 on the mill 
walls). Furthermore, the kinematical free-surface condition and the dynamic (force 
balance) condition are imposed on the free boundary, 

u - n  = 0 ,  p n  - /i ( n . V v  + V v  - 1 2 )  = crlcn on -Y, (3.3) 
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where n is a unit normal vector, IC the curvature of 9, and G the surface tension. 
Note that the position of the free boundary Y is unknown a priori. Finally, the drop 
area A is given. 

3.1. Asymptotic decomposition of the problem 
Since the drop diameter is assumed to be small compared with the size of the 
four-roller mill, the exterior flow field is only slightly disturbed by the presence of 
the drop. Therefore, to the first approximation, the outer solution is determined 
in the whole mill by equations (3.1) and (3.2). On the other hand, the drop itself 
experiences only slightly the presence of the rigid walls and hence is mainly driven 
by the local flow field, which will play the role of a far field for the flow around the 
drop in unbounded fluid (inner solution). This is the standard procedure of matched 
asymptotic expansions. 

Thus, the outer solution u" and p" satisfies the problem 

V - v "  = o ,  Vp" = pAu" in 9% , (3.4) 

u s =  V o n B ,  (3.5) 
where P is the region completely bounded by 99. Upon solving this well-posed 
problem, an appropriately truncated expansion of the velocity v"(z) and pressure 
p"(z) about the stagnation point z = 0 is calculated, which will be denoted by V"(z)  
and P"(z),  respectively. Here z = (x,y) is a position point. Then the inner solution 
uo and po  is determined by the problem 

V . u o  = 0 ,  Vpo = pdv" in g o ,  (3.6) 

(3-7) 

(3.8) 

u0 - n  = 0 ,  p o n  - p (n- Vv" + Vuo.n) = alcn on 9, 

uo N V"(z)  , po - P"(z) as ( z I  + co , 
where go is the complement of 9' in the (x,y)-plane. 

4. Solution of the problem 
4.1. Complex variables 

Let us first recall the complex representations for a two-dimensional Stokes flow 
(Langlois 1964). In the Cartesian (x,y)-plane this flow may be described in terms of 
the stress-stream function w = q + iv, which is a bi-analytic function of the complex 
variable z = x + iy. The latter means that w satisfies the double Cauchy-Riemann 
equation 

which is equivalent to the Stokes equations (3.1). In particular, w can be expressed in 
terms of two analytic Goursat functions, say wo and w1, as 

w = wg(z) + z* w,(z) . (4- 1) 

Here and throughout this paper an asterisk is used to denote the complex conjugate. 
The complex velocity field u = u, + ivy, pressure p and stresses F(dz) exerted on an 

element dz, 
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are given by 

It is clear that y is the customary stream function, and cp is Airy’s stress function. 
Let s and n be the arclength and the inward normal coordinate at the boundary of 

the flow domain 9. It is assumed that the direction of s is selected in such a manner 
that the local coordinates ( S , I Z )  and the Cartesian co-ordinates (x,y) have the same 
orientation. In other words, the unit normal and tangent vectors have the relation 

2 z  . c?z 

an as 

2i = i v y ,  p = -pAcp, F(dz) = -2pid(Vcp). (4.2) 

- - - I - .  

This agreement is widely used in complex analysis. 

the form 
In terms of the stress-stream function, the boundary conditions (3.2) and (3 .3)  take 

(4.3) 

(4.4) 

where V, is the tangential component of velocity (V,  is zero on the mill walls, but is 
constant on the rollers’ boundary). The boundary conditions for cp follow from the 
dynamic condition written in the form 

acp y = O ,  q = O ,  2 p - = o  o n S ” ,  
dn 

because 
aZ 

- = K -  
ds2 c7n 

due to Frenet’s formula. The integration constants are omitted, since the stress-stream 
function w is defined by 2i and p apart from a linear function Re (a* z )  + b, where a 
and b are complex constants. 

Note that the flow is assumed to be symmetric about the x- and y-axes, and 
additionally with respect to rotation by the angle n/2. This is equivalent to the 
conditions 

u ( z * ) *  = v(z) , - v(-z) = u(z) , iu(iz) = u(z) . (4.5) 
Also, the drop shape is symmetric about the x- and y-axes. 

4.2. Outer solution 
The two-dimensional outer flow field is computed numerically by the boundary- 
element method (Hromadka I1 & Lai 1987; Pozrikidis 1992), which is here adapted 
to Aows satisfying the symmetry conditions (4.5). In this case the velocity, pressure 
and stream function are represented in terms of Green’s functions, namely 

Re [ K ,  ( z O , z )  f ( z ) ]  ds , 
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where f ( z )  is the unknown density defined on @ which is that part of the rigid 
boundary 9l which belongs to the first quadrant (x 3 0, y 3 0). The kernels are given 
by 

zo + z K ,  (zo, z) = log ~ 

zoz  - z; z* 
/ z o - z / +  (z;)  ’ -9 ’ 

4 [lzOl4 - Re (2;) z2]  
K p  ( zo ’z )  = z [lzOl4 - 2 Re (2;) z2 + z4] ’ 

zo + z z;; + z  zo + z 
20 - z z; - z  z; - z  K,, (zo, 2 )  = (2; - z * )  log I __ 1 + (zo - z*) log 1 ___ j + 2z* log 1 ~ 1 . 

The constant Cm is equal to the pressure at the mill centre, which is undetermined in 
incompressible fluid mechanics. 

It is straightforward to check that the local flow field about the centre of the mill 
is calculated as 

y“(z) = -i lm [(G + GI 1zI2 + G2 z’) z 2 ]  + 0 ( 1 ~ 1 ~ )  , 
where 

Note that G2 = 0 due to (4.5), which is also confirmed numerically. In particular, the 
truncated velocity field, pressure, stress and stream functions are given by 

P(z) = G (x - iy) + GI [x (x2  + 3y2) - i y (3x’ + y2)] , ( 4 . 6 ~ )  

P“(z) = C” + 6~ GI (x2 - y2) , (4.6b) 

C“ 

4P 
P(z) = -_ (x’ + y’) - i [G + G I  (x’ + y2)] (x2 - y’) , (4 .6~)  

Y ~ Z )  = - [G + G~ (x2 + y2)] X Y  . (4.6d) 

Unlike (2.1), the local pressure (4.6b) is not constant. In this connection, there arises 
the dimensionless constant 

GI L2 
c1 = __ 

G ’  
where L is the half-size of the mill side (in Taylor’s experiments, L = 3.8 cm), which 
is associated with the local pressure gradient. The sign of C1 will tell us whether the 
drop should cusp or burst with increasing strain. 

Consider a two-dimensional drop of area A = 7~ R2 
with the far-field flow given by (4.6u)-(4.6d). In this 
at infinity has the expression 

4.3. Inner solution 

(G + GI 1 ~ 1 ~ )  zZ + 

placed within unbounded fluid 
case the stress-stream function 

P m  1 

(4.7) 
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where C" is unknown. 

number (2.3) and, additionally, the pressure parameter c given by 
Following Taylor (1934), let us introduce the deformation parameter (2.2), capillary 

The inner problem will be solved analytically, using complex-variable techniques. 
Superscript '0' indicating the inner solution, will be omitted in the following. 

Using the Goursat representation (4.1) and taking advantage of the formula 

which is merely the definition of the complex partial derivative in the local coordinate 
system (s, n), the boundary conditions (4.4) take the form (Richardson 1968; Jeong & 
Moffatt 1992) 

(4.9) 

which have to be solved in combination with the asymptotic conditions at infinity 

w ~ ( z )  - -;Gi? , w ~ ( z )  - --;GI z 3  - - z a s z - t w : ,  (4.10) 
C" 

4P 

following from (4.7). 
By Riemann's theorem, there exists a conformal mapping of the infinite flow domain 

go onto the disc 3 = {\( I  < I) ,  given by z = z ( 0 .  Moreover, this mapping function 
is unique if one requires that 

In particular, z ( 0 )  = 00. In addition, since the drop is doubly symmetric, 

-z(-<) = z ( [ )  , z (i'")* = z([) . (4.12) 

Let us make the change of variables z = z([) retaining the same notation for the 
unknown functions, e.g. 

w ( 0  = "o( i )  + 40' W l ( i )  . 

Then the inner problem (4.9) takes the form 

wo (el') + z (el')' w 1  (e'") = o , (4.13a) 

(4.13b) 

and the asymptotic conditions (4.10) reduce to 

wo(i)  - - i G z 2 ( [ )  as i -+ 0 ,  (4.14a) 

C" 
w,([) - -;GI z 3 ( [ )  - - z ( [ )  as [ -+ 0 . 

4P 
(4.14b) 

It is straightforward to check that the Schwartz problem (4.13b) and (4.14b) has the 
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unique symmetric solution 

which is an analytic function in the disc 92 with a triple pole at the origin. In addition, 
equation (4.13b) in combination with the argument principle suggests that wl([) has 
exactly two simple zeros in 9, say merges 
with P2 (Antanovskii 1994~). Note that the constant C" is also determined as 

and P2,  or just one double zero if 

Likewise, taking the real part of equation (4.13~) and solving the resulting Schwartz 
problem with the condition (4.14a), one obtains 

1 ei' + i 
2n -* 

WO([) = - i G z 2 ( [ )  + - /* Re [ f G z 2  (ei") - z (ei9)' w1 (eig),] el9 - d9 , 

which is analytic in the disc 9 with a double pole at the origin. 

analytically continued on the whole plane as (Richardson 1968) 
Furthermore, equation (4.134 suggests that the conformal mapping z ( [ )  can be 

z ( i )  = - wo p / r ) * / w ,  ( I / [*)* > l i l  > 1 , 

from which it is straightforward to check that z ( i )  must be a rational function, more 
specifically 

where a. > 0 due to the normalization condition (4.11). Indeed, z ( i )  is defined on the 
whole complex plane and has exactly three simple poles at i = 0, 1 / P ;  and 1 / P i ,  
and vanishes at infinity (Antanovskii 1994~). These coefficients are determined from 
the requirement that the function 

U ( 0  = w o ( 0  + z (1 /i*)* W l ( 0  

has only removable singularities within 9. Actually, the function U ( [ )  must be 
identically zero due to (4.13a), which will be satisfied by the above requirement, since 
the real part of U ( c )  is already zero. Note that z (1  /i*)* has two simple poles at 
C = PI and P 2 .  

Owing to the symmetry condition (4.12), 

(4.15) 

where a, P,  and y are dimensionless real coefficients (Antanovskii 1995). The condition 
for the function U ( c )  to be regular at the origin immediately gives y = c a p .  The 
remaining singularities at [ = i-y1I2 are removed if w1 (-Ly1I2) = 0. Rearranging, the 
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latter reduces to the transcendental equation (Antanovskii 1994b, 1995) 

(4.16) 

Finally, the coefficient a is discarded from the condition that the drop area is equal 
to n R2, which gives 

(4.17) 

where 

A, (P)  = 1 - E D 2  [2(1 - e ) + e p 2 ]  , 

B,(P)  = 4 2  [P (1 + p') [3 + E (2  + e) 821 . 
Equations (4.16) and (4.17) implicitly determine the conformal mapping in terms of 
the given parameters A and c:. Then, using (4.15), the deformation parameter 6 is 
found from the formula 

. z ( ~ ) + ~ m [ z ( i ) ]  - p ( I  + e x 2 )  
z( 1) - Im[z(i)] a ( I  + e p2) 

b - 

The tip curvature of the drop endpoints is similarly calculated: 

~ " ( 1 )  + ~ ' ( 1 )  - (1 - t : r / j )  [X + p - ~ E X ~ ( X  - 3 p )  + c 2 a 2 [ 1 ' ( 9 ~  + p)]  
--K = _ _  - __.-- - 

?( 1 ) 2  R [cn - f l  - c x B ( 3 a  + p)]' 
Note that, for pure straining flow ( e  = 0), equations (4.16) and (4.17) reduce to the 

single equation (Richardson 1968) 

where K is the complete elliptic integral of the first kind: 

In this case, since (4.15) becomes Joukowski's function, the drop assumes an elliptical 
cross-section the tip curvature of which is expressed in terms of 6 as 

(4.19) 

Using the well-known asymptotic properties of K [ m ]  as m -+ 1, it is straightforward 
to check that 

,i=- 26 ( ~ ) " ~ l O g ( 4 ~ )  1 - 6  1 + 6  a s 6 - 1 ,  
n 

which appears to fit equation (4.18) quite well for all 6. 

5. Results and discussion 
Numerical simulations of the outer solution are carried out exactly for Taylor's 

mill described in $2, using 300 linear boundary elements. The integral terms over the 
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FIGURE 2. Stream lines and velocity field for viscous flow in Taylor's four-roller mill. 
The computations suggest that C" = 4.79 and C, = 2.54. 
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FIGURE 3. Dimensionless velocity, u,(x)/ I/, on the x-axis versus dimensionless distance, x /L .  

boilndary elements are evaluated by the fourth-order Gaussian quadrature formula. 
When the observation point is right on the source-point element, the leading-order 
singularity is computed analytically and the remainder numerically (Pozrikidis 1992). 

The outer-flow pattern in the mill is plotted in figure 2. The computations suggest 
that C1 = 2.54, and Co = 4.79 which is quite close to Taylor's CO = 5.1. It is important 
to emphasize that C1 > 0. If it were negative, say for another mill configuration, an 
inviscid drop would burst with increasing strain rather than cusp. The dimensionless 
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Measured Computed 
0.5 1 .0 7.0 6.4 
1 .o 1.5 3.9 3.5 
1.5 2.0 2.7 3. I 
2.0 2.5 2.0 4.9 

TABLE 1. Dimensional displacement and time for a particle to pass along the x-axis from x, to x2 
in Taylor’s four-roller mill at 7’ = 48.7 s. 

1 .0 

0.8 

0.2 

0 0.2 0.4 0.6 0.8 1 .o 
Capillary number 

FIGURE 4. Response diagrams (6 versus i) for 
c = 0 (broken line), 0.002, 0.004, 0.006, 0.008 and 0.01 (solid lines), respectively. 

velocity u, /V on the positive x-axis as a function of x / L  is given in figure 3,  where 
V is the rollers’ linear velocity and L is the half-size of the mill side. Note that, 
in Taylor’s experiments, L = 3.8 cm and V = 0.1542 cms-’ at T = 48.7 s. The 
calculated times of passages of a particle on the x-axis compared to those measured 
by Taylor (1934) are presented in table 1. The discrepancy between the measured and 
computed values in rows 1 and 2 can be explained by the fact that the actual flow set 
up by Taylor is three-dimensional due to the presence of the front and rear sides of 
the mill, which reduce the flow field. However, rows 3 and 4 show that, far from the 
mill centre, the measured flow is even faster than the computed one. Plausibly, this is 
also caused by a three-dimensional effect (for example, the observed particles flow at 
different speeds in different planes parallel to the front side of the mill). 

are given for some values of F in figures 4 and 5, 
respectively. Note that 6 = 2 for small /z (all the curves in figure 4 have tangent line 
6 = 2 at 6 = 0). For a three-dimensional drop, this fact was theoretically predicted 
and experimentally verified by Taylor (1932, 1934). Functions (4.18) and (4.19) are 
shown by the broken lines. Notice a maximum value 1, ;r 0.61 of the function (4.18) 
at 6, z 0.8, which is close to Taylor’s critical value 0.65 at which a sudden transition 
to a pointed drop occurred. A similar response diagram was plotted by Buckmaster 

The plots of 6 and R I K (  versus 
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Capillary number 
FIGURE 5. Dimensionless tip curvature, R / K J ,  versus 1 for 

E = 0 (broken line), 0.002, 0.004, 0.006, 0.008 and 0.01, respectively. 

Y 

FIGURE 6. Increasingly elongated shapes of a drop of radius R = 0.25 cm ( E  = 0.01) 
in Taylor’s flow at 1 = 0.4, 0.5, 0.6 and 0.7, respectively. 

& Flaherty (1973) for a drop of the same viscosity as the exterior fluid. Thus, beyond 
L,, no steady solution with e = 0 exists, whereas two possible solutions exist for 
i < A*, one of which becomes unstable with greater 6 (Buckmaster & Flaherty 1973; 
Antanovskii 19946). For E > 0, the response diagrams have horizontal asymptotes as 
/1 tends to infinity. Hence, the drop survives for all strains and becomes cusped when 
A -+ 00 as is suggested by figure 5 .  In particular, it shows exponential growth of K 

with increasing 1, which is similar to the result by Jeong & Moffatt (1992). 
Furthermore, for c 3 E ,  = 0.004, the drop deformation 6 is a one-to-one function 

of the capillary number 3,. Note that, for Taylor’s mill, the critical pressure parameter 
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0 0.2 0.4 0.6 0.8 1 .o 
Capillary number 

FIGURE 7. Response diagram (6 versus 2) for a drop of radius R = 0.1 cm (t = 0.00174). 
The arrows indicate transition from unstable to stable configurations. 

FIGURE 8. (a) Stream lines of the local outer flow (i = 0.613), and the shapes of a drop of radius 
R = 0.1 cm (t = 0.00176) corresponding to states 1 and 2 shown in figure 7. ( h )  Stream lines of 
the local outer flow (2 = 0.585), and the shapes of a drop of radius R = 0.1 cm ( E  = 0.00174) 
corresponding to states 3 and 4 shown in figure 7. 

E ,  corresponds to the drop radius R, = 0.15 cm. The shapes of a fairly large drop of 
radius R = 0.25 cm, which roughly corresponds to E = 0.01, are depicted in figure 6 
for some values of A. It is seen that these have remarkable similarities with the 
three-dimensional drops documented by Taylor (1934) and Rumscheidt & Mason 
(1961). For 0 < c < E., a multi-valued dependence of 6 on ;1 occurs. In particular, 
for a certain interval of capillary numbers, three possible solutions, say d l ,  d2, d3 
(61 < 62 < 631, exist. It is conceivable that the solution 62 described by the decreasing 
dependence of A on 6 is unstable. Therefore, with increasing R, the solution 6, will 
merge with 62 at a critical A and then a transition to 63 must occur, and vice versa, 
with decreasing 2, the solution f i 3  will merge with h2 at another critical value of ;1 



340 L. K. Antanovskii 

and a transition to d1 will be seen. These bifurcations are indicated by the arrows in 
figure 7, which form a typical hysteresial loop. The shapes of the drop at the critical 
capillary numbers along with the stream lines of the critical flows, plotted with the 
difference 3G R2 in the stream function, are shown in figure 8. It is seen that the drop 
shapes differ significantly. This effect can be identified with the sudden transition of 
a rounded drop to a pointed one. 

6. Concluding remarks 
The results obtained can be roughly summed up as follows. The two-dimensional 

flow in Taylor’s four-roller mill with no drop effect is computed numerically, using a 
boundary-element method. Then the local structure of that flow at the mill centre, 
where the drop is positioned, is used to complete the inner problem for the drop 
behaviour. It is shown that this flow distorts the drop until it develops two cusps 
in the capillary interface with increasing strain. Note that the cusps are apparent, 
because the conformal mapping (4.15) is analytic on the disc boundary 3’9, and 
hence the drop interface is always an analytic curve, though its curvature can reach 
extremely high magnitudes with increasing strain. 

It is worth emphasising that the cusps are formed at those stagnation points of 
the drop interface where the inner flow is convergent (Jeong & Moffatt 1992). So, 
the effect of surfactants which can be convected towards those points in diminishing 
the surface tension, can facilitate the cusp formation. This effect can be studied 
analytically as is done in Antanovskii (1994~). 

Response diagrams showing the drop deformation versus capillary number are 
plotted, which demonstrate that, for the pressure parameter E beyond a critical value 
E * ,  or equivalently, for the drop size greater than a critical one, a unique solution 
exists for all capillary numbers. Otherwise, multiple solutions occur in a certain 
interval of 2, which may result in a hysteresial behaviour of the drop. The study of 
this phenomenon will be the subject of a separate paper. In this context it is worth 
noting that a time-evolving drop can be described by the rational conformal mapping 
of the same form (4.15) but with time-dependent coefficients. 

The author is grateful to Professors A. Acrivos, R. H. J. Grimshaw, D. D. Joseph 
and H. K. Moffatt for helpful discussion and stimulation of this work. The comments 
of anonymous referees are greatly appreciated. 
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